Enhancing functional connectivity analysis in task-based fMRI using the BOLD-filter method: Greater network and activation voxel sensitivities
Task-based functional MRI (tb-fMRI) has gained prominence for investigating brain connectivity by engaging specific functional networks during cognitive or behavioral tasks. Compared to resting-state fMRI (rs-fMRI), tb-fMRI provides greater specificity and interpretability, making it a valuable tool for examining task-relevant networks and individual differences in brain function.
In this study, we evaluated the utility of the BOLD-filter-a method originally developed to extract reliable BOLD (blood oxygenation level-dependent) components from rs-fMRI-by applying it to tb-fMRI data as a preprocessing step for functional connectivity (FC) analysis. The goal was to enhance the sensitivity and specificity of detecting task-induced functional activity. Compared to the conventional preprocessing method, the BOLD-filter substantially improved the isolation of task-evoked BOLD signals.
It identified over eleven times more activation voxels at a high statistical threshold and more than twice as many at a lower threshold. Moreover, FC networks derived from BOLD-filtered signals revealed clearer task-related patterns, including gender-specific differences in brain regions linked to everyday behaviors. These patterns were not detectable using conventional preprocessing approaches. Our findings demonstrate that the BOLD-filter enhances the robustness and interpretability of FC analysis in tb-fMRI.
By effectively isolating meaningful functional networks, this approach offers advantages over conventional preprocessing methods. Overall, the BOLD-filter provides a useful improvement for enhancing the characterization of task-induced brain activity in tb-fMRI analysis.
temperature sensor, pressure sensor, motion sensor, proximity sensor, light sensor, gas sensor, humidity sensor, infrared sensor, touch sensor, accelerometer, gyroscope, ultrasonic sensor, biosensor, chemical sensor, optical sensor, magnetic sensor, RFID sensor, flow sensor, vibration sensor, IoT sensor
#TemperatureSensor, #PressureSensor, #MotionSensor, #ProximitySensor, #LightSensor, #GasSensor, #HumiditySensor, #InfraredSensor, #TouchSensor, #AccelerometerSensor, #GyroscopeSensor, #UltrasonicSensor, #Biosensor, #ChemicalSensor, #OpticalSensor, #MagneticSensor, #RFIDSensor, #FlowSensor, #VibrationSensor, #IoTSensor
International Conference on Network Science and Graph Analytics
Visit: networkscience.researchw.com
Award Nomination: networkscience-conferences.researchw.com/award-nomination/?ecategory=Awards&rcategory=Awardee
For Enquiries: support@researchw.com
Get Connected Here
---------------------------------
---------------------------------
instagram.com/network_science_awards
tumblr.com/emileyvaruni
in.pinterest.com/network_science_awards
networkscienceawards.blogspot.com
youtube.com/@network_science_awards
Comments
Post a Comment