Graph Convolutional Network with Multi-View Topology for Lightweight Skeleton-Based Action Recognition Skeleton-based action recognition is an important subject in deep learning. Graph Convolutional Networks (GCNs) have demonstrated strong performance by modeling the human skeleton as a natural topological graph, representing the connections between joints. However, most existing methods rely on non-adaptive topologies or insufficiently expressive representations. To address these limitations, we propose a Multi-view Topology Refinement Graph Convolutional Network (MTR-GCN), which is efficient, lightweight, and delivers high performance. Specifically: We propose a new spatial topology modeling approach that incorporates two views. A dynamic view fuses joint information from dual streams in a pairwise manner, while a static view encodes the shortest static paths between joints, preserving the original connectivity relationships. We propose a new MultiScale Temporal Convolutional Network...